Skip to contents

A configurable evaluator for regression tasks. The function computes various regression metrics, particularly useful for reconstruction tasks (e.g., autoencoders). Reproduces the behaviour of Python's regression_metrics_fn.

Supported metrics names:

  • "kl_divergence" – Kullback-Leibler divergence

  • "mse" – Mean Squared Error

  • "mae" – Mean Absolute Error

Usage

regression_metrics_fn(x, x_rec, metrics = NULL)

Arguments

x

Numeric vector, matrix, or torch tensor of true target data sample.

x_rec

Numeric vector, matrix, or torch tensor of reconstructed data sample.

metrics

Character vector listing which metrics to compute. Default is c("kl_divergence", "mse", "mae").

Value

Named numeric vector with one element per requested metric.

Examples

set.seed(42)
x <- runif(1000)
x_rec <- runif(1000)
regression_metrics_fn(x, x_rec, metrics = c("mse", "mae"))
#>       mse       mae 
#> 0.1726048 0.3409409