Skip to contents

AdaCare model for explainable clinical health status representation learning. Supports both code-based features (with embedding) and timeseries features (direct).

Usage

AdaCare(
  dataset = NULL,
  embedding_dim = 128,
  hidden_dim = 128,
  kernel_size = 2,
  kernel_num = 64,
  r_v = 4,
  r_c = 4,
  activation = "sigmoid",
  rnn_type = "gru",
  dropout = 0.5
)

Arguments

dataset

A SampleDataset object providing input/output schema

embedding_dim

Integer, embedding dimension for code features. Default 128

hidden_dim

Integer, hidden dimension for RNN. Default 128

kernel_size

Integer, kernel size for convolutions. Default 2

kernel_num

Integer, number of kernels per scale. Default 64

r_v

Integer, reduction rate for input recalibration. Default 4

r_c

Integer, reduction rate for conv recalibration. Default 4

activation

Character, activation function. Default "sigmoid"

rnn_type

Character, RNN type ("gru" or "lstm"). Default "gru"

dropout

Numeric, dropout rate. Default 0.5

Details

Paper: Ma et al. "AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration." AAAI 2020.

This model automatically detects feature types and processes them appropriately:

  • SequenceProcessor: Code-based features → Embedding → AdaCareLayer

  • TimeseriesProcessor: Numerical features → AdaCareLayer (direct)

Returns attention weights for interpretability.